

Microsoft Dynamics
®

 AX 2012

Windows Event Tracing in

Microsoft Dynamics AX 2012

White Paper

This paper describes how to use the Windows Event Tracing
infrastructure in Microsoft Dynamics AX 2012.

Date: September 2011

www.microsoft.com/dynamics/ax

Author: Nikolay Muzykin, Sustained Engineering

http://www.microsoft.com/dynamics/ax

2

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

Table of Contents

Introduction .. 3

Instrumented feature areas .. 3

Recording traces ... 3
Using performance monitor to record traces ... 3
Using the LogMan tool to record traces ...11
Using the XPerf tool to record traces ..12

Viewing traces .. 13
Using event viewer to view traces ..13
Using the TraceRpt and XPerf tools to view traces ..14
Using the XPerfView tool to view traces ..15

Triggering tasks on events .. 15

Instrumenting application code .. 19
xClassTrace::logComponentMessage ..19
xClassTrace::isTracingEnabled ...19
xClassTrace::start ..20
xClassTrace::stop ..20

Relevant links ... 20

Appendix 1: Events reference ... 20

3

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

Introduction

In Microsoft Dynamics® AX 2012, functionality to support tracing throughout the product has been
added. This functionality makes it easier for administrators and developers to investigate, analyze,
and address potential problems by providing insight into what is happening in the lower layers of the
product when user scenarios are running.

Microsoft Dynamics AX 2012 uses the Windows event tracing framework for instrumentation. In a

basic usage scenario, you would record a trace into a file and then open it in a viewer to analyze it.
This document explains how this can be done by using standard tools. For more advanced scenarios,
please see the Windows event tracing framework reference in the Relevant links section later in this
document.

Instrumented feature areas

The following areas in Microsoft Dynamics AX 2012 are instrumented out of the box:

 Data access

 Security

 Time zone operations

 X++ interpreter

 Enterprise portal for Microsoft Dynamics AX

 Windows form manipulation

 Setup

 Master resource planning

Also, several methods are exposed to X++ to allow basic tracing in customizations or adding more
tracing to existing areas.

Recording traces

Because a standard Windows framework is used in Microsoft Dynamics AX 2012, standard Windows

tools can be used to control tracing. The following sections describe how some of these tools can be
used to save traces of Microsoft Dynamics AX 2012 events.

Using Performance Monitor to record traces

Complete the following procedures to record events by using the Performance Monitor console that is
available in Windows.

Start the Create New Data Collector Set Wizard

1. Open Performance Monitor by running perfmon.msc.

2. Go to Data Collector Sets\User Defined node.

4

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

3. Right-click User Defined, and then click New > Data Collector Set on the shortcut menu.

Complete the Create New Data Collector Set Wizard

1. On the How would you like to create this new data collector set page, enter a name, select
the Create manually (Advanced) option, and then click Next.

5

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

2. On the What type of data do you want to include page, verify that the Event trace data
check box is selected, and then click Next.

6

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

3. On the Which event trace providers would you like to enable page, click the Add button to
add a provider.

4. In the Event Trace Providers list, select Microsoft-DynamicsAX-Tracing, and then click OK.

7

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

5. In the Properties list, select Keywords (Any), and then click Edit.

6. In the Property list, select the check boxes for the keywords that you want to trace. For example,
to trace events generated by calling the xClassTrace::logComponent method, select the

8

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

TraceInfo keyword, and then click OK.

Note For a list of available keywords and the events that are associated with them, see
“Appendix 1: Events reference,” later in this document.

9

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

7. On the Where would you like the data to be stored page, change the folder where the data is
saved, if needed, and then click Finish to complete the wizard.

After the collector is created, it can be started to write events to the trace file and stopped afterwards

from the new tree node created under the Data Collector Sets > User Defined item:

10

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

 In the left pane, right-click the new collector, and then click Start or Stop on the shortcut menu.

Data collector properties can be changed to gather other kinds of information such as performance
counters, other Microsoft Dynamics AX events, or events from other applications and system
components.

Also, you may need to modify trace settings to increase buffer size or count to make sure there are no
dropped events when recording traces of operations that produce large amount of data:

1. In the left pane, right-click the new collector, and then click Properties on the shortcut menu.

11

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

2. In the Properties dialog box, change settings on the Trace Buffers tab.

These settings can be adjusted to balance the memory and storage performance required to record
traces without dropping events during specific scenarios. In general, a higher volume of events
requires more and larger buffers. For example, the following settings are recommended for data
collectors that include X++ interpreter events or data access events.

Parameter Value

Buffer size 512

Minimum buffers 60

Maximum buffers 60

Using the LogMan tool to record traces

The logman.exe command line tool that is distributed with Windows can be used to create and control

trace collection:

1. Run the following command to create a data collector set. In the command, “DAX Trace” is the
name to be given to collector, and the other parameters specify which keywords to enable in
which provider:

logman.exe create trace “DAX Trace” -p Microsoft-DynamicsAX-Tracing 2

12

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

Parameter Description

“Dax Trace” The name of the trace collector to create

Microsoft-DynamicsAX-Tracing The trace provider name

2 The keyword to enable. See the list of available keyword values and
events that are associated with them in ”Appendix 1: Events reference,”
later in this document.

2. Run the following command to start tracing:

logman.exe start “DAX Trace”

3. Run the following command to stop tracing after executing actions that you want to analyze:

logman.exe stop “DAX Trace”

Note The data collector sets that are created by using the Performance Monitor console can be
manipulated by using the logman.exe tool and vice versa.

Using the XPerf tool to record traces

XPerf.exe is a command-line tool that is distributed as part of the Windows Performance Analysis
toolkit in the Windows SDK. It can be used to control and process trace data. This tool is especially
useful for recording information about Windows kernel activity along with Microsoft Dynamic AX
events. To record a trace:

1. Run the following command to create and start a logger:

Xperf.exe -start “DAX Trace” -on Microsoft-DynamicsAX-Tracing:2 -f DAXTrace.etl

Parameter Description

“DAX Trace” The name of the logger

Microsoft-DynamicsAX-Tracing The trace provider name

2 The keyword to enable. See the list of available keyword values and
events that are associated with them in “Appendix 1: Events reference,”

later in this document.

DAXTrace.etl The name of the file that the log is stored in

2. While the logger is active, its status can be queried by using the XPerf –loggers parameter:

Xperf.exe –loggers “DAX Trace”

3. To stop recording, execute the following command:

XPerf.exe –stop “DAX Trace”

13

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

Viewing traces

Any tool that can process events created by using the Windows Events framework can be used to view
Microsoft Dynamics AX event traces.

Using Event Viewer to view traces

The Event Viewer console that is available in Windows can be used to view the log files:

1. Open the Event Viewer by running eventvwr.msc.

2. In the left pane, right click Custom Views, click Open Saved Log on the shortcut menu, and
then select the log file that was specified when the data collector was created.

The log can then be viewed in the same way as standard windows event logs.

14

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

Using the TraceRpt and XPerf tools to view traces

The tracerpt.exe tool that is available with Windows can be used to convert .etl files into other
formats, such as .csv or .xml files. For example, the following command will convert an .etl trace into
a trace.xml file:

tracerpt "c:\PerfLogs\Admin\DAX Trace_000001.etl" -o trace.xml -of XML

The contents of the resulting .xml files are similar to the following:

15

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

The XPerf.exe tool can be used to manipulate or analyze .etl files as well. For example, the following
command will convert an .etl trace into .csv format:

Xperf.exe -i DAXTrace.etl -o DAXTrace.csv

Using the XPerfView tool to view traces

The XPerfView utility can be used to view traces that include Windows kernel events in way that is

easy to understand, and can show Microsoft Dynamics AX events as well.

See the “Relevant links” section later in this document for more information about this tool.

Triggering tasks on events

Events that are generated by Microsoft Dynamics AX can be used to trigger tasks in Windows Task
Scheduler. For example, this functionality can be used to inform the administrator when a certain
event happens, to start detailed diagnostic tracing, or to restart failing services.

It can be configured by using the Task Scheduler console that is available in Windows:

1. Open the Task Scheduler console by running taskschd.msc.

2. In the left pane, right-click Task Scheduler Library, and then click Create Basic Task on the
shortcut menu to start the Create Basic Task Wizard.

16

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

3. On the Create a Basic Task page, enter a task name, and then click Next.

17

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

4. On the Task Trigger page, select the When a specific event is logged option button to specify
the task trigger, and then click Next.

5. On the When a Specific Event Is Logged page, in the Log field, select the Microsoft Dynamics
AX tracing channel, and then click Next.

6. On the Action page, select an option button for an appropriate action, for example, Display a
message.

18

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

7. On the next page, configure the selected action and click Next. On the following page, click
Finish to complete the wizard.

Now any events that are logged into the “Operational” channel cause a message box to be displayed.
Make sure that this channel is enabled by using the Event Viewer console, because this is required to

trigger tasks.

19

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

A created task can be edited by using the Task Scheduler console to provide a more granular filter
that specifies which events must trigger the task and other parameters.

Instrumenting application code

In addition to built-in instrumentation, Microsoft Dynamics AX exposes several methods that allow
solutions to be built on top of it to create basic events. The methods can be found in the xClassTrace
class exposed to X++.

To instrument custom application code, you only need to add method calls that log messages you are
interested in. After that, tracing can be configured by using standard tools as described earlier with no
additional coding.

xClassTrace::logComponentMessage

Calling this method from your code triggers an event, putting the provided message into the log if
tracing is enabled as an AxTraceComponentMessageEvent event. If tracing is disabled for the channel
and keywords that this event belongs to, the xClassTrace::logComponentMessage method returns
immediately and has negligible performance impact.

Parameter Description

component A string that identifies the component that triggered the event. Use it to
distinguish different solutions or feature areas within a single solution.

message A message string that details what happened.

Example:

xClassTrace::logComponentMessage(‘MyCompanySolution’, strfmt(‘Processing item id %1’, itemId));

xClassTrace::isTracingEnabled

This method returns true if tracing is enabled. It can be used to eliminate any performance impact of
instrumentation by making sure that an event message is only generated when it is going to be used.

Note This method only needs to be used if there is significant overhead in collecting the information
that is required to create event message or other parameters. If there is no such overhead, it is
enough to call the xClassTrace::logComponentMessage method, because calling it has no performance
impact when tracing is disabled.

Parameter Description

level Determines the status of what event level (information messages,
warnings, or errors) must be enabled. Returns true if any level is enabled
by default.

keyword Determines which tracing keywords must be checked. Returns true if
tracing is enabled for any keyword by default. See the list of available

keyword values and events that are associated with them in “Appendix 1:
Events reference,” later in this document.

Example:

if (xClassTrace::isTracingEnabled())

{

 eventMessage = collectEventData(); // generate event message

 xClassTrace::logComponentMessage(‘MyCompanySolution’, eventMessage);

}

20

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

xClassTrace::start

Calling this method enables tracing and starts saving events into a log file. It can be used to automate
tracing parts of the application that you are interested in during development.

Parameter Description

logFileName The name of the file to save the log into. The log file is created under the
log folder on the client or AOS system, depending on where this method
is executed.

logBufferSize The buffer size in kilobytes to use when recording events. Larger buffer
sizes help make sure that events are not dropped during recording. The
default value is 512.

minBuffers The minimum number of buffers to allocate. This value specifies how
many buffers are allocated at all times when the recording session is
active. Higher numbers of buffers help make sure that events are not
dropped during recording. The default value is 60.

maxBuffers The maximum number of buffers to allocate. This value specifies how
many buffers can be allocated when the minimum number is not enough
to handle all incoming events. Higher numbers of buffers help make sure
that events are not dropped during recording. The default value is 60.

Keywords What tracing keywords to enable. See the list of available keyword values
and events that are associated with them in “Appendix 1: Events
reference,” later in this document. All keywords are enabled by default.

maxFileSize The maximum size in megabytes of the log file. Specifying higher values
here allows tracing to run longer before the log file is filled. The default
value is 1000.

Example:

xClassTrace::start(‘MyLogFile.etl’);

execute(); // run the code being debugged

xClassTrace::stop();

xClassTrace::stop

Calling this method stops a tracing session that was started by calling the xClassTrace::start method.

Relevant links

Refer to the links below for more information about the Windows Events tracing functionality:

 Windows events reference: http://msdn.microsoft.com/en-us/library/aa964766.aspx

 XPerf and other trace analysis tools: http://msdn.microsoft.com/en-us/performance/default.aspx

Appendix 1: Events reference

The following tables list events that are generated by Microsoft Dynamics AX, and specify the
keywords and channels that they are associated with.

1. Microsoft-DynamicsAX-Admin channel:

http://msdn.microsoft.com/en-us/library/aa964766.aspx
http://msdn.microsoft.com/en-us/performance/default.aspx

21

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

Event ID Keyword

ComponentInstallationStart 75 Setup

ComponentInstallationSuccess 76 Setup

ComponentInstallationWarning 77 Setup

ComponentInstallationError 78 Setup

InstallationStart 79 Setup

InstallationSuccess 80 Setup

InstallationError 81 Setup

2. Microsoft-DynamicsAX-Analytic channel:

Event ID Keyword

OutOfMemoryError 0 ServerHealth

SecurityTPFAuthz 11 Database, Security

TableLoading 12 Caching, AOT

ClassLoading 13 Caching, AOT

UnitOfWorkAddClone 14 Database

UnitOfWorkConflict 15 Database

UnitOfWorkSaveChangesBegin 16 Database

UnitOfWorkSaveChangesEnd 17 Database

UnitOfWorkStateChange 18 Database

UnitOfWorkPack 19 Database

UnitOfWorkUnpack 20 Database

UnitOfWorkTopologicalOrder 21 Database

UnitOfWorkDbOperation 22 Database

ViewDictViewComputedColumnMethodCalled 23 Database

ViewDictViewComputedColumnMethodFailed 24 Database

ViewDictViewComputedColumnMethodSucceeded 25 Database

ViewComputedColumnMethodCalled 26 Database

ViewComputedColumnMethodFailed 27 Database

ViewComputedColumnMethodSucceeded 28 Database

ViewDDLGenerationStarted 29 Database

ViewDDLGenerationFinished 30 Database

ViewFieldListGenerationStarted 31 Database

ViewFieldListGenerationFinished 32 Database

DataAccessCaching 33 Caching, Database

DataAccessSCSCCaching 34 Caching, Database

QueryFilterOperationEvent 35 Database

SecurityAPIInvoked 36 Security

22

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

SecurityEntryPointAuthz 37 Security

SecurityLoadRolePermissions 38 Database, Security

SecurityLoadUserRolesDatabase 39 Security

SecurityMenuItemInvoked 40 AOT, Security

TimeZoneConversion 43

SecurityWebEntryPointAuthorization 44 EP, AOT, Security

SecurityWebUserRoles 45 EP, AOT, Security

WebFrameworkException 46 EP

SCscInsertRecordSetOrder 50

AxTransactionBeginEvent 51 XppMarker

AxTransactionEndEvent 52 XppMarker

AxTraceMessageEvent 53 TraceInfo

CSRoundTripBegin 54 RPC

CSRoundTripEnd 55 RPC

XppMethodBegin 56 XPP

XppMethodEnd 57 XPP

XppUtilFunc 58 AxUtilFunc

AxSqlStmtEvent 59 SQL

DBConnect 60 DatabaseDetailed

DBDisconnect 61 DatabaseDetailed

TTSBegin 62 TTS

TTSCommit 63 TTS

TTSAbort 64 TTS

SqlInputBind 65 BindParameter

SqlRowFetch 66 DatabaseDetailed

SqlRowFetchCumu 67 DatabaseDetailed

AxTraceComponentMessageEvent 68 TraceInfo

SecurityAccessDenied 69 Security

TraceInformation 70 BindParameter, TTS,
DatabaseDetailed, SQL, XPP, RPC,
TraceInfo, XppMarker

SetupLogMessage 71

SetupLogError 72

ServerStartup 73 Database

ModelStoredProc 74 SQL

ModelSqlInputBind 94 BindParameter

AssemblyCacheElementBegin 98 Caching

AssemblyCacheElement 99 Caching

23

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

AssemblyCacheElementEnd 100 Caching

SecurityScScFilteredAllTables 101 Security

SecurityEmptyCrossCompanyFilter 102 Security

SecurityLoadRolePermission 103 Security

SecurityLoadUserRolesCache 104 Security

SecurityEntryPointAuthzFailed 105 Security

XppParameterInfo 106 XPPParm

3. Microsoft-DynamicsAX-ClientAccess channel:

Event ID Keyword

ClientEventFormOpen 95

ClientEventFormClose 96

ClientEventControlClicked 97

4. Microsoft-DynamicsAX-Operational channel:

Event ID Keyword

MRPWrkCtrSchedulerLoadOrder 82 MRP

MRPWrkCtrSchedulerSaveJobs 83 MRP

MRPError 84 MRP

MRPReqProcessStatus 85 MRP

MRPPartitionOrders 86 MRP

MRPBOMLevel 87 MRP

MRPWrkCtrSchedulerSaveDerived 88 MRP

MRPReqTaskController 89 MRP

MRPActionMessage 90 MRP

MRPNetResourceScheduler 91 MRP

MRPItem 92 MRP

MRPReqTask 93 MRP

The following values can be used when specifying keywords. Most of the tools allow more than one
keyword to be specified by adding them together:

Keyword Value

XppMarker 0x0000000000000001

TraceInfo 0x0000000000000002

RPC 0x0000000000000004

XPP 0x0000000000000008

SQL 0x0000000000000010

DatabaseDetailed 0x0000000000000020

TTS 0x0000000000000040

24

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

BindParameter 0x0000000000000080

AxUtilFunc 0x0000000000000100

XPPParm 0x0000000000000200

Setup 0x0000010000000000

MRP 0x0000020000000000

EP 0x0000040000000000

ServerHealth 0x0000080000000000

Caching 0x0000100000000000

AOT 0x0000200000000000

Database 0x0000400000000000

Security 0x0000800000000000

More details can be found by examining the TraceProviderCrimson.man manifest file that is installed
with Microsoft Dynamics AX. The ECManGen tool available in Windows SDK can be used to view the
manifest file.

25

WINDOWS EVENT TRACING IN MICROSOFT DYNAMICS AX 2012

© 2011 Microsoft Corporation. This document is provided “as-is.” Information and views expressed in this document, including URL

and other Internet Web site references, may change without notice. You bear the risk of using it.

Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or

should be inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You may copy and

use this document for your internal, reference purposes. You may modify this document for your internal, reference purposes.

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your
people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar
Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a
way that helps you drive business success.

U.S. and Canada Toll Free 1-888-477-7989

Worldwide +1-701-281-6500

www.microsoft.com/dynamics

http://www.microsoft.com/dynamics

